VFD Applications:

Selec Controls Pvt. Ltd.
EL-27-1, Electronic Zone, TTC Industrial Area, MIDC, Mahape, Navi Mumbai 400710, INDIA Tel.:+91-22-4141 8468 / 452. Fax: +91-22-41418 408. Email: sales@selec.com | www.selec.com

High Performance AC Drives

PREFACE

This manual can provide you with the detailed rules and precautions, including installation, wiring, the setting of functional parameter, daily maintenance, malfunction diagnosis and solution etc.

To give full play to its function and ensure the safety of both users and product, please read this manual carefully before using it. Any incorrect operations may lead to fault, malfunction or shortened lifetime, even damage of device and accident casualty.

- Please pay attention to the following points when using it:
- Power must be shut off before wiring.
- Ground wire must be connected correctly.
- In any case, AC power lines can't be connected to the output terminals, such as U, V or W
- Do not touch the internal components for safety.
- Only the qualified electronic engineer is allowed to assemble, wire, repair or maintain the converter.
- Converter must be installed in a appropriate operating environment and far away from humidity or water drops; care must be taken to prevent it from direct sunlight or being overheated.
- Do not conduct the procedure of inspection or maintenance until converter has been shut down for more than 3 minutes.
- No permission is granted to change or modify the internal components or circuits.
- Do not conduct the Withstand Voltage Test on the internal components.

This manual is enclosed randomly as an attachment, please keep it safe in case that you need it for the inspection or maintenance of this product. Any information in this manual is subject to change without notice in accordance with our policy of continuous improvement of product.

CONTENTS

1. Acceptance
1.1 Inspection on delivery
1.2 Illustrations for nameplate of FD100
1.3 Illustrations for nameplate of FD200
2. Installation
2.1 Installation environment
2.2 Installation instructions and space limit
3. Wiring
3.1 Connection methods for assorted devices
3.2 Standard wiring diagram for FD100 \& FD200
3.3 Descriptions of major loop's terminal for FD100 \& FD200
3.4 Illustrations for control loop's terminal for FD100
3.5 Illustrations for control loop's terminal for FD200
4. Keyboard and Panel
4.1 Illustrations of keyboard for FD100
4.2 Illustrations of keyboard for FD200
4.3 Operating instructions
5. Running
5.1 Commissioning
5.2 Quick debugging
6. Specification of Functional Parameters
6.1 Functional parameters table
6.2 Detailed of function parameters
7. Fault Correcting
7.1 Malfunction and solutions
7.2 Common faults and processing schemes \}
8. Maintenance
8.1 Daily maintenance and up keep
8.2 Warranty
9. Communication Protocol
9.1 Protocol content
9.2 Protocol introductions
9.3 Frame structure
9.4 Command code \& data description
9.5 Read-write rule of parameter address for function code
9.6 Parameter description of communication

10. Appendix

10.1 List of braking resistor
10.2 Technical specifications
10.3 Dimension for Installation
10.4 Table of parameter setting

ACCEPTANCE

1-1 Inspection on delivery

Pre-delivery inspection for each converter will be implemented strictly by our QC Department; meanwhile, the packaging will be strengthened with special packing materials which can protect it from damage caused by collision. Please find the following points to check. after unpacking it: Please check if there is any damage caused during the transportation; Please check if the enclosed documents are all inside the case, including manual, certificate and warranty card. Please check if this is the model of the product for which you placed an order. Please check whether you receive the right converter accessories you ordered.

1-2 Illustrations for nameplate of FD100

Product Model $\quad \Rightarrow$	MODEL: FD100-1-010-C-CE
Power $\quad \Rightarrow$	POWER : 1HP/0.75KW
Input Power Specification \Rightarrow	INPUT: 1PH $220 \mathrm{~V} \pm 15 \% 50 / 60 \mathrm{~Hz}$
Output Power Specification \Rightarrow	OUTPUT: 0-400Hz 5A BAR CODE
Item Number $\quad \Rightarrow$	$\begin{aligned} & 115050001 \\ & \text { HIGH POWERED INVERTER } \\ & \hline \text { Selec Control Pvt. Ltd } \end{aligned}$

Illustrations for product model of FD100

1-3 Illustrations for nameplate of FD 200

Product Model $\quad \Rightarrow$	MODEL : FD200-3-100-C-CE
Power \Rightarrow	POWER : 10HP/7.5KW
Input Power Specification \Rightarrow	INPUT: 10PH $415 \mathrm{~V} \pm 15 \% 50 / 60 \mathrm{~Hz}$
Output Power Specification \Rightarrow	OUTPUT: $0-400 \mathrm{~Hz} 17 \mathrm{~A}$ BAR CODE
Item Number $\quad \Rightarrow$	019059037 HIGH POWERED INVERTER Selec Control Pvt. Ltd

Illustrations for product model of FD200

WIRING

- (For the safety of operator as well as devices, only the qualified electronic engineer is allowed to operate it. Please pay attention to the following precautions while wiring.
- Power must be shut off before wiring.
- PE earth terminal must be connected with the ground.
- The rated voltage must be in conformity with AC voltage. Power cords must be connected with the terminal R, S and T while lines for motor should be connected with terminal U, V and W ; any incorrect connection may cause damage to the internal components of converter.
- The reliability of the terminals and wires must be evaluated before wiring, and screws for the terminals of major loop must be fastened solidly.
- To avoid electric shock, do not touch the terminals of major loop.

3-1 Connection methods for assorted devices

3-2-1 Standard wiring diagram for FD100

3-2-2 Standard wiring diagram for FD200

3-3 Description of major loop's terminal for FD100 \& FD200 series

Terminal symbol (code)	Functional descriptions
R, S, T	Terminals for three-phase AC input 415V
L,N	Terminals for Single-phase AC input 220V
U, V, W	Output terminals, connect with three-phase AC electromotor
B1, B2	Terminals for braking resistor(optional)
$(+),(-)$	Terminals for external braking unit(optional)
\perp	Terminal of ground (Earth terminal)

For safety's sake, please connect wires according to the regulations of National Electrical Code while proceeding wiring

3-3-1 Connection of input terminal R, S, T or L, N

An additional breaker/chopper must be connected in series with the terminals of major loop (R, S, T or L, N) and three-phase AC or Single-phase AC input. For better running, an electromagnetic contactor should be connected with them in series so that it could cut off the power while the protection function of converter is activated (Tip: R-C surge absorbers should be added to the ends of electromagnetic contactor. If an additional earth leakage circuit breaker (ELCB) is installed as a protective device for electric leakage, the sensitivity of current should be more than 200mA while actuation time should be no less than 0.1 second in order to prevent ELCB from malfunctioning. AC reactor must be connected with the input terminals in case that some of rectifiers are damaged by high-voltage and high-current input circuit from the grid, which could also improve the power factors of input terminals. Do not control the converter by adopting the way of powering on or off major loop. Instead of that, RUN/STOP buttons on the keyboard or control loop terminals should be applied to the control of converter; if it has to be controlled by that way, it can be implemented only once every one hour. It's feasible to reduce the interference with devices nearby by connecting an additional noise filter with the input terminals. Do not connect converter driven by three-phase power to single-phase source.

3-3-2 Connection of output terminal U, V, W

Output terminals must be connected to three-phase motor in the correct order; if motor rotates in the wrong direction, any two wires among U, V and W electrical wiring can be switched with each other.

In any case, do not connect output terminals to phasing capacitor or surge absorber. When the length of wire connecting converter with motor is more than 50 meters, there may be a large amount of electric leakage caused by the capacitors between the wiring, which may lead to over current; additionally, to protect the insulation of motor from being damaged, an additional output reactor must be installed

An additional noise filter can be installed to reduce the electromagnetic interference of output if surroundings can be easily affected by converter; interference can also be minimized by reducing its carrier frequency.

3-3-3 Connection of braking resistors and braking unit

If inertia load is so large that converter needs to be shut off frequently or in a short time, braking resistors or braking unit should be selected and installed accordingly to solve the issue of insufficient braking capacity or lengthen braking torque.

Terminals (B1, B2) of major loop must be connected with braking resistors (Tip: terminal B1 or B2 indicates that this converter is the one with built-in braking units)

If there is no built-in braking unit, positive (+) and negative (-) terminals of major loop should be connected to external braking units.

Do not connect positive (+) and negative (-) terminals of major loop to braking resistor.

3-3-4 Earth terminal PE $\xlongequal{-}$

For safety's sake, earth terminal PE must be well grounded in order to reduce noise. Please use the standard ground lead which should be as short and thick as possible(its grounding impedance should be no more than 10Ω)

Do not connect its ground lead with that of high-current loading machine to ground at the same time, for example welder or high-power motor, they must be grounded separately. All the converters must be connected to the same earth terminal directly if two or more converters are installed together; please refer to the wiring layout below:

(a) correct
(b) not recommend
(c) error

3-3-4 Explanations of control loop terminals FD100

Al1	Al2	GND	AO	$24 V$	Y1	COM	X 1	X 2	X 3	X 4	ROA	ROB	ROC

Items	Symbol	Terminal name	Terminal description \& default setting
Multi-functional input	X1	Multi-functional input terminal 1	Default setting : Forward / Stop
	X2	Multi-functional input terminal 2	Default setting : Reverse / Stop
	X3	Multi-functional input terminal 3	Default setting : External fault input
	X4	Multi-functional input terminal 4	Default setting : Multi-step \& speed reference 1
	X5	Multi-functional input terminal 5	Default setting : Multi-step \& speed reference 2
	COM	Common terminal	Multi-functional input common terminal +24 V power reference groung
Analog input	Al1	Analog input 1	0~10V input
	Al2	Analog input 2	0~10V/0~20mA input (J3 jumper is optional)

	+10V	Analog preset power source	+10V DC 10 mA (potentiometer 3~5K)
	GND	Analog reference ground	Analog input output reference ground
Multi-functional output	Y1	Multi-functional output terminal 1	Default setting: running status
	ROA	Relay output ROA-ROB (normally closed) ROA-ROC (normally opened)	Default setting : Fault output
	ROB		
	ROC		
Analog output	AO	Analog output terminal	0~10V/0~20mA output (J 4 jumper is optional) GND is also known as reference ground
Power source	+24V	+24V power source	+24 V DC 100 mA COM is also known as power ground
communication	485+	485 signal positive terminal	Standard serial communication Interface RS-485; Please use twisted pair or shielded line
	485-	485 signal positive terminal	

3-3-5 Explanations of control loop terminals for FD200

+24 V	Y 1	Y 2	X 1	X 2	X 3	X 4		A0		$485-$	$485+$	
	ROA	ROB	ROC	COM	X 5	X 6	GND	Al 1	Al 2	+10 V		

Items	Symbol	Terminal name	Terminal description \& default setting
Multi-functional input	X1	Multi-functional input terminal 1	Default setting : Forward / Stop
	X2	Multi-functional input terminal 2	Default setting : Reverse / Stop
	X3	Multi-functional input terminal 3	Default setting : External fault input
	X4	Multi-functional input terminal 4	Default setting : Multi-step \& speed reference 1
	X5	Multi-functional input terminal 5	Default setting : Multi-step \& speed reference 2

Items	Symbol	Terminal name	Terminal description \& default setting
Multi-functional input	X6	Multi-functional input terminal 6	Default setting : Multi- step \& speed reference 3
	COM	Common terminal	Multi-functional input common terminal +24 V power reference ground
Analog input	Al1	Analog input 1	0~10V input
	Al2	Analog input 2	$0 \sim 10 \mathrm{~V} / 0 \sim 20 \mathrm{~mA}$ input (J 4 jumper is optional)
	+10V	Analog preset power source	+10 V DC 10 mA (potentiometer 3~5K)
	GND	Analog reference ground	Analog input-output reference ground
Multi-functional output	Y1	Multi-functional output terminal 1	Default setting : Running status
	Y2	Multi-functional output terminal 2	Default setting : Running direction
	ROA	Relay output ROA-ROB (normally closed) ROA-ROC (normally opened)	Default setting : Fault output
	ROB		
	ROC		
Analog output	AO	Analog output terminal	0~10V/0~20mA output (J5jumper is optional) GND is also known as reference ground
Power source	+24V	+24V power source	+24 V DC 100 mA COM is also known as power ground
communication	485+	485 signal positive terminal	Standard serial communication interface RS-485; Please use twisted-pair or shielded line
	485-	485 signal negative terminal	

Multi-core shielded cable or stranded wire should be used to connect and control terminals. The terminal which is closed to converter must be connected to earth terminal PE while shielded cable is applied to it. When wiring, control cable must be kept away from main circuit and high-current circuit at least 20 cm , such as power lines, motor wires, wires for contactor and relay. Instead of parallel wiring, vertical wiring should be adopted to prevent converter from malfunction resulted from external interference.

KEYBOARD \& PANEL

4-1 Illustrations of Keyboard

4-1-1 Diagram of Keyboard for FD100

4-1-2 Indicator light show

1) Functional indicator light:

Light is the name of the	Indicator light show
RUN	Running status indicator light: When the lights went out said inverter in the down state; Light flash frequency converter in the parameter self fearning state; When the light is said inverter in the running state
F/R	And reversing lamp: Said the lights went out in the forward state; The light is said in a state of inversion.
L/R	External terminal control indicator: Said the lights went out the keyboard control state; The light is said terminal control state.

2) Unit Indicator light shows :

Light is the name of the	Indicator light show
Hz	Frequency unit
A	Current unit
V	Voltage unit

3) Digital display area : Five LED display, can display setting frequency, output frequency and so on all sorts of monitoring data and alarm code.

3) Keys function description
 Theky

The key symbol	The name Says	Functional specifications
PRG	$\begin{array}{\|c\|} \hline \text { Programming } \\ \text { key } \end{array}$	Enter or exit menu level I.
FUNC / ESC	Return key	Under the outage display and operation interface, recycled display status information; Return to the superior programming menu.
-	Increasing Key	Increase data or function code.
∇	Decreasing key	Decrease data or function code.
	Menu move selection / monitoring key	Select the displayed parameters in turn in the stop or running state, and select the digit to be modified when modifying parameters.
RUN	Running Key	Start the frequency inverter in the operation panel control mode.
STOP/RESET	Stop / Reset	Stop the operation when it is in the running state and perform the reset operation when it is in the fault state. The functions of this key are restricted by F7-18
JOG/REV	Multifunctional selection Key	Regulate the speed directly by panel potentiometer when $\mathrm{F} 0-10$ is set to 10 .
	Potentiometer	Adjust the frequency, the restriction of the function code P0-01.

4-2 Illustrations of keyboard operation

RUNNING

5-1 Commissioning

5-1-1 Check before running

- Please check whether wiring is correct or not, especially output terminals (U, V, W) which mustn't be connected to power source; additionally, earth terminals PE must be well grounded as well.
- Please confirm that there is no short circuit or line-to-ground short circuit between terminals or any exposed charged component.
- Please confirm that all the components are fastened, such as terminals, pluggable connectors or screws.
- Make sure that all the switches are off before it's connected to power source, and that converter will not malfunction or be started when it's switched on.
- Do not connect it to power s until its enclosure is assembled.

5-1-2 Commissioning

Converter must be checked and confirmed comprehensively before commissioning; its default running mode is to be controlled through keyboard and panel.
 frequency is 5.0 HZ):
Whether motor is rotating in the right direction or not;
Whether its rotation is smooth or not (NO abnormal noise or vibration is permitted)
Whether the acceleration or deceleration of motor is stable.

- If converter functions properly, please preset its operating frequency first; please press the button RUN start commissioning and check whether its output current/voltage is normal or not only after confirmation can it be power-on.

Converter must be switched off immediately by pushing the button STOP/RESET if there is anything goes wrong with converter or motor; meanwhile, please refer to Chapter 7 Fault Correcting to find out the reason why it malfunctions. Even it is shut off, output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) may still cause electric shock to anyone who touches them unless power ports ($\mathrm{R}, \mathrm{S}, \mathrm{T}$) are disconnected from main circuit.

Additionally, it will take some times for filter capacitor to discharge because there is still charging voltage stored in the filter capacitor even main power source is shut off. Charging indicator will be off if main power source is shut off; voltage in the middle DC circuit must be tested by voltmeter. Only after it's confirmed that the voltage is lower than specified value can internal circuit be touched.

5-2 Quick debugging

SPECIFICATION OF FUNCTIONAL PARAMETERS

6-1 Functional Parameters Table

P0: Basic functional parameters

Function Code	Description	Description and Range	Default	Modification	Modbus Address
P0-00	Parameter setting mode	0 : Enabled (except those parameters marked with"x") 1 : Disabled (except P0-00) 99 : Factory reset	0	\bullet	41001
P0-01	$\begin{aligned} & \text { Frequency } \\ & \text { setting } \\ & \text { mode } \end{aligned}$	0 : Frequency setting (UP/ DOWN) 1 : Panel potentiometer 2 : External Al1 3 : External Al2 4 : PI regulation 5 : UP/DOWN by the P5-20 add and subtract 6 : UP/DOWN by the P5-20 add and subtract, frequency qing zero downtime 7: Frequency communication reference	0	\bullet	41002
P0-02	Control mode for running	0 : Controlled by keyboard 1: Controlled by terminals, STOP Key disabled 2 : Controlled by terminals, STOP Key enabled 3 : Controlled by communication	0	\bullet	41003
P0-03	Frequency setting	$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency (P0-09)	50.0 Hz	\bigcirc	41004
P0-04	Acceleration time 0	0.1s~3600.0s	20.0s	\bigcirc	41005
P0-05	Deceleration time 0	0.1s~3600.0s	20.0s	\bigcirc	41006
P0-06	Running direction Option	0 : Default direction 1 : Reverse direction	0	\bullet	41007
P0-07	Anti- Reversion Setting	0 : Enabled 1 : Disabled	0	\bullet	41008
P0-08	Maximum frequency	Upper limit frequency $(\mathrm{PO}-09) \sim 400.0 \mathrm{~Hz}$	60.0 Hz	\bullet	41009
P0-09	Upper limiting frequency	Lower limiting frequency (P0-10) \sim Maximum frequency (P0-08)	50.0 Hz	\bullet	41010

P0-10	Lower limiting frequency	$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency (P0-09)	0.0 Hz	\bullet	41011
P0-11	$\begin{aligned} & \text { Jog } \\ & \text { frequency } \end{aligned}$	$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency (P0-09)	5.0 Hz	\bigcirc	41012
P0-12	Carrier frequency	1~16KHz	Depending on model	-	41013
P0-13	Carrier frequency Regulation	0 : Regular PWM mode 1 : Random PWM mode	0	\bullet	41014
P0-14	Keyboard frequency setting (UP/DOWN)	0 : Automatic storage when power down 1 : No storage for power-down	0	\bigcirc	41015
P0-15	Slave address for RS485 Modbus Communication	1 ~ 127 (0 for Broadcast address)	1	\bullet	

(P0-17 Reserved)

P1: Human Interface parameters

Function Code	Description	Setting range	Default	Modification	Modbus Address
P1-00	Default display information for Starting	0 : Setting frequency 1: Output frequency 2 : Output current 3 : Bus voltage 4 : Rotational Speed of motor 5 : Percentage of output current 6 : IGBT temperature 7 : Output voltage 8 : Output power 9: Count value 10 : PI index value 11 : PI feedback value 12 : Accumulated running time hour) 13 : Input terminal status 14 : Output terminal status 15 : Power	0	-	41019
P1-01	Setting of display information	0: 0~3 messages 1: 0~7 messages 2: $0 \sim 11$ messages 3: $0 \sim 15$ messages	1	-	41020

P1-02	Display coefficient of mechanical speed	$0.1 \sim 60.0$	29.0	\circ	41021
P1-03	JOG/REV (function selector)	0: JOG $1:$ FDW / REV switching	0	\bullet	41022

P2: Parameters of Start-Stop Mode

Function Code	Description	Setting range	Default	Modification	Modbus Address
P2-00	Starting Mode	0 : Starting directly 1 : DC braking-Starting 2 : Speed tracking after startup 3 : Adaptive direction of speed tracking	0	\bullet	41026
P2-01	Starting frequency	0.0~10.0Hz	0.5 Hz	\bullet	41027
P2-02	Retention time for starting	$0.0 \sim 50.0 \mathrm{~s}$	0.0s	\bullet	41028
P2-03	Braking current before tarting	0~150.0\%	50.0\%	\bullet	41029
P2-04	Braking current before tarting	0~50.0s	0.0s	\bullet	41030
P2-05	Stop mode	0 : Regular stopping 1 : Stop by decelerating 2 : Decelerating-DC brakingStopping	1	\bullet	41031
P2-06	Start frequency of DC braking	$0.0 \sim 10.0 \mathrm{~Hz}$	2.0 Hz	\bullet	41032
P2-07	Braking current for stopping	0~150.0\%	50.0\%	\bullet	41033
P2-08	Braking time for stopping	0~50.0s	0.0s	\bullet	41034
P2-09	FWD/REV Dead time	$0.0 \sim 50.0 \mathrm{~s}$	0.2 s	\bullet	41035
P2-10	Lower limiting frequency for running control	0 : running with lower limiting frequency 1 : stopping 2 : standby	0	\bullet	41036

P3: Parameters of Motor

Function Code	Description	Setting range	Default	Modifica- tion	Modbus Address
P3-00	Rated frequency	F3 (P4-05) $\sim 400.0 \mathrm{~Hz}$	50.0 Hz	\bullet	41039
P3-01	Rated voltage	$200 \sim 440 \mathrm{~V}$	Depending on model	\bullet	41040
P3-02	Rated current	$0.1 \sim 999.9 \mathrm{~A}$	Depending on model	\bullet	41041
P3-03	Rated power	$0.1 \sim 630.0 \mathrm{KW}$	Depending on model	\bullet	41042
P3-04	Rated rotational Speed	$1 \sim 36000 \mathrm{rpm}$	1440 rpm P3-05	No-load current	$0.1 \sim 999.9 \mathrm{~A}$
P3-06	Stator resistance	$0.001 \sim 50.000 \Omega$	Depending on model	\bullet	41044
P3-07	Excitation/Mag- netic inductance	$0.1 \sim 5000.0 \mathrm{mH}$	Depend on model	\bullet	41045

P4: V/F Control Parameters

P4-00	V/F curve setting	0: General V/F 1: 2 power V/F 2: 3 power V/F 3: high starting torque V/F 4: Self-setting V/F 5: Self-adaptive control	0	-	41052
P4-01	V/F Intermediate frequency 1	0.0Hz~ F2 (P4-03)	1.0 Hz	\bullet	41053
P4-02	V/F Intermediate voltage1	$0 \sim$ rated voltage (P3-00)	5V	\bullet	41054
P4-03	VIF Intermediate frequency 2	F1 (P4-01)~F3 (P4-05)	5.0 Hz	\bullet	41055
P4-04	V/F Intermediate voltage 2	$0 \sim$ rated voltage(P3-00)	25 V	-	41056
P4-05	V/F Intermediate Frequency 3	$\begin{aligned} & \text { F2 (P4-03) ~ rated } \\ & \text { frequency (P3-00) } \end{aligned}$	25.0 Hz	\bullet	41057
P4-06	V/F Intermediate voltage 3	$0 \sim$ rated voltage (P3-00)	115V	\bullet	41058
P4-07	Torque upgrade	0.0 ~ 15.0\%	5.0	-	41059
P4-08	Slip compensation	$0.0 \sim 10.0 \mathrm{~Hz}$	0.0 Hz	\bullet	41060
P4-09	AVR function	0: Disabled 1: always enabled 2: only enabled in process of deceleration	0	\bullet	41061
P4-10	Energy - efficient running	0: Disabled 1: Enabled	0	\bullet	41062

(P4-11~ P4-18 Reserved)

P5: Input function parameters

Function Code	Description	Setting range	Default	Modification	Modbus Address
P5-00	Al1 lower limiting value	0~10.00V	0.05V	-	41071
P5-01	Corresponding setting for Al1 lower limit	0~100.0\%	0.0\%	\bullet	41072
P5-02	Al1 upper limiting value	Al1 lower limiting value~10.00V	10.00V	\bullet	41073
P5-03	Corresponding setting for Al1 upper limit	0~100.0\%	100.0\%	\bullet	41074
P5-04	Al1 input filtering time	0.0s~10.0s	0.1 s	\bullet	41075
P5-05	AI2 lower limiting value	0.00V~10.00V	0.05V	\bigcirc	41076
P5-06	Corresponding setting for AI2 lower limit	0~100.0\%	0.0\%	-	41077
P5-07	AI2 upper limiting value	AI2 lower limiting value~10.00V	10.00V	\bigcirc	41078
P5-08	Corresponding setting for AI2 upper limit	0~100.0\%	100.0\%	-	41079
P5-09	AI2 input filtering time	0.0s~10.0s	0.1 s	-	41080
P5-10	Multi functional Input Terminal X1	0 : Disabled 1 : Forward	$\begin{gathered} 1 \\ \text { Forward } \end{gathered}$	\bullet	41081
P5-11	Multi functional Input Terminal X2	3 : Three-wire control 4 : Multi-phase reference	$\begin{gathered} 2 \\ \text { Reverse } \end{gathered}$	\bullet	41082
P5-12	Multi functional Input Terminal X3	5 : Multi-phase reference velocity 2	14 Fault	\bullet	41083

P5-13	Multi-functional Input Terminal X4	6: Multi- Phase reference velocity 3 7: JOG forward	4 ref. velocity 1	\bullet	41084
P5-14	Multi-functional Input Terminal X5 (CN1needle base input)	8: JOG reverse 9: Increasing frequency 10: Decreasing frequency 11: Acc-Dec time Option 1 12: Acc-Dec time Option 2	5 ref. velocity 2	-	41085
P5-15	Multi-functional Input Terminal X6	14: External fault Input 15: Fault reset	Reserved	-	41086
P5-16	Multi-functional Input Terminal X7	17: External count value input	Reserved	\bullet	41087
P5-17	Multi-functional Input Terminal X8	19: program run 20: pause of program run	Reserved	-	41088
P5-18	Terminal control mode	0 : Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2	0	-	41089
P5-19	Terminal filtering time	$2 \mathrm{~ms} \sim 100 \mathrm{~ms}$	10	\bigcirc	41090
P5-20	The range of the UP/DOWN increasing decline	0.0~50.0Hz	0.1	\bigcirc	41091
P5-25	Comm. Baud Rate	$\begin{array}{ll}2: 1200 B P S & 3: 2400 B P S \\ 4: 4800 B P S & 5: 9600 B P S \\ 6: 19200 B P S & 7: 38400 B P S\end{array}$	5	-	41096
P5-26	Modbus Data Format	$\begin{array}{\|ll} \text { 0: 8-N-1 } & \text { 1: } 8-\mathrm{N}-2 \\ \text { 2: } 8-\mathrm{E}-1 & \text { 3: } 8-\mathrm{O}-1 \end{array}$	0	-	41097
P5-27	Response Delay	$0 \sim 200 \mathrm{msec}$	20	-	41098
P5-28	Serial Timeout	0.0 : Not check $0.1 \sim 60.0 \mathrm{Sec}$	0.0	-	41099
P5-29	Abnormal action selection	0 : Continue operation 1 : Alarm shutdown	0	\bigcirc	41100

(P5-21~ P5-24 \& P5-30 Reserved)

P7-04	Proportional gain (P)	$0.0 \sim 10.0$	1.0	\circ	41115
P7-05	Integral time (I)	$0.0 \sim 100.0 \mathrm{~s}$	1.0 s	\circ	41116
P7-06	Deviation limit	$0.00 \sim 2.00$	0.02	\circ	41117
P7-07	Sampling period(T)	$0.1 \sim 100.0 \mathrm{~s}$	0.02 s	\circ	41118
P7-08	Detected value of feedback disconnection	$0.00 \sim 5.00$	0.0	\circ	41119
P7-09	Time for detecting feedback disconnection	$0.0 \sim 100.0 \mathrm{~s}$	10.0 s	\circ	41120
P7-12	Sleep time	$0 \sim 3000 \mathrm{~S}$	600	\circ	41123
P7-13	Dormancy pressure	$0 \sim 10.00$	0	\circ	41124
P7-14	Dormancy frequency	$0 \sim 0.0 \mathrm{~Hz}$	0	41125	
P7-15	Wake up the pressure	$0 \sim 10.00$	0	41126	

P8: Simple PLC and Multispeed Parameters

Func- tion Code	Description	Setting range	Default	Modifi- cation	Modbus Address
P8-00	Program run mode	0: Disabled 1: Program stop after one cycle of running 2: Program operates as last program runs after one cycle of running 3: Circulatory running of program	0	\bullet	41127
P8-01	First phase speed	Lower limiting frequency \sim Upper limiting frequency	11.0 Hz	\circ	41128
P8-02	Second phase speed	Lower limiting frequency \sim Upper limiting frequency	12.0 Hz	\circ	41129
P8-03	Third phase speed	Lower limiting frequency \sim Upper limiting frequency	13.0 Hz	\circ	41130
P8-04	Forth phase speed	Lower limiting frequency \sim Upper limiting frequency	14.0 Hz	\circ	41131

P8-05	Fifth phase speed	Lower limiting frequency ~ Upper limiting frequency	15.0 Hz	\bigcirc	41132
P8-06	Sixth phase speed	Lower limiting frequency ~ Upper limiting frequency	16.0 Hz	\bigcirc	41133
P8-07	Seventh phase speed	Lower limiting frequency ~ Upper limiting frequency	17.0 Hz	\bigcirc	41134
P8-08	Runtime of principal frequency	0~6400.0	0.0	\bigcirc	41135
P8-09	First phase time	0~6400.0	0.0	\bigcirc	41136
P8-10	Second phase time	0~6400.0	0.0	\bigcirc	41137
P8-11	Third phase time	0~6400.0	0.0	\bigcirc	41138
P8-12	Forth phase time	0~6400.0	0.0	-	41139
P8-13	Fifth phase time	0~6410.0	0.0	\bigcirc	41140
P8-14	Sixth phase time	0~6400.0	0.0	\bigcirc	41141
P8-15	Seventh phase time	0~6400.0	0.0	\bigcirc	41142
P8-16	Time unit of multi-velocity	0 : second 1 : minute 2 : hour	0	\bullet	41143
P8-17	Running directions of programs	0~255 BIT 0~7 indicates 0~7 directions (0: Forward 1: Reverse)	0	\bullet	41144
P8-18	Timing for each program's Acc- Dec	0~65535 BITO~15 indicates Acc-Dec time of $0 \sim 7$ phase	0	\bigcirc	41145

P9: Protection Function parameters

Function Code	Description	Setting range	Default	Modification	Modbus Address
P9-00	Options for overload protection	0 : Disabled 1: Enabled	0	\bullet	41148
P9-01	Critical point of overload protection	50~120\%	110\%	-	41149
P9-02	Overvoltage protection	0 : Disabled 1: Enabled	1	\bullet	41150
P9-03	Critical point of Overvoltage	110.0~150.0\%	118	\bullet	41151
P9-04	Over-current protection	0: Disabled 1: Enabled	1	\bullet	41152
P9-05	Critical point of over-current	100~180\%	180	\bullet	41153
P9-06	Phase-failure protection of input	0 : Disabled 1 : Enabled	0	\bullet	41154
P9-07	Phase-failure protection of output	0 : Disabled 1 : Enabled	0	-	41155
P9-08	Latest fault information	0~20		\times	41156
P9-09	Latest fault information	0~20		\times	41157
P9-10	Latest two fault messages	0~20		\times	41158
P9-11	Operating frequency of latest fault			\times	41159
P9-12	Output current of latest fault			\times	41160
P9-13	Bus voltage of latest fault			\times	41161
P9-14	Input state of latest fault			\times	41162
P9-15	Output state of latest fault			\times	41163
P9-16	Fault since the reset function	0 : invalid 1 : under-voltage fault alarm automatic reset (unlimited) $2 \sim 20$: fault self-recovery	0	\bullet	41164

(P9-17 Reserved)

Parameters of PA Enhancements

Function Code	Description	Setting range	Default	Modification	Modbus Address
PA-00	Acceleration time 1	0.0~3600.0s	20.0s	-	41166
PA-01	Deceleration time 1	0.0~3600.0s	20.0s	\bigcirc	41167
PA-02	Acceleration time 2	0.0~3600.0s	20.0s	-	41168
PA-03	Deceleration time 2	0.0~3600.0s	20.0s	-	41169
PA-04	Acceleration time 3	0.0~3600.0s	20.0s	-	41170
PA-05	Deceleration time 3	0.0~3600.0s	20.0s	-	41171
PA-06	$\begin{gathered} \text { Jog } \\ \text { acceleration } \\ \text { time } \end{gathered}$	0.0~3600.0s	5.0s	-	41172
PA-07	Jog acceleration time	0.0~3600.0s	5.0s	-	41173
PA-08	Hopping frequency 1	0.0~Upper limiting frequency (P0-09)	0.0 Hz	-	41174
PA-09	Hopping frequency 2	0.0~Upper limiting frequency (P0-09)	0.0 Hz	-	41175
PA-10	Amplitude of Hopping frequency	0.0~Upper limiting frequency (P0-09)	0.0 Hz	-	41176
PA-11	FDT level value	0.0~Upper limiting frequency (P0-09)	0.0 Hz	-	41177
PA-12	FDT lagged value	0.0~FDT level value (PA-12)	0.0 Hz	-	41178
PA-13	Amplitude of Detected frequency FAR	0.0~Upper limiting frequency (P0-09)	0.0 Hz	-	41179
PA-14	Setting count value	1~65535	10	\bigcirc	41180
PA-15	Specified count value	1~65535	10	-	41181
PA-16	Under locking function for overload	0: Disabled 1: Enabled	1	-	41182

"o" : It indicates that it's only when converter is running or shut down on the condition that P0-00 equals zero that code parameters can be changed or modified.
" \bullet ": It indicates that code parameters cannot be changed or modified while converter is running.
" x " : It indicates that code parameters are read-only, which cannot be changed or modified.

6-2 Detailed of function parameters (Explanations of Functional Parameters)

P0 Basic functional parameters

P0-00	Parameter setting mode	$0:$ Enabled (except those parameters marked with" \times ") $1:$ Disabled (except P0-00) $99:$ Factory reset	Default : 0

- It's mainly applied to the setting of functional parameters; "factory reset" option should be used with caution, especially after all these parameters are set.

P0-01	Frequency setting mode	0 : Frequency setting (UP/DOWN) 1 : Panel potentiometer ; 2 : External AI1 3 : External AI2; 4 : PI regulation 5 : UP/DOWN by the P5-20 add \& subtract 6 : UP/DOWN by the P5-20 add \& subtract, frequency qing zero downtime 7: Frequency communication reference	Default : 0

- It's mainly applied to the setting of functional parameters; "factory reset" option should be ssed with caution, especially after all these parameters are set.
0 : Frequency setting
The frequency of converter can be preset by parameter P0-03; frequency can be preset or changed directly through these $\boldsymbol{\nabla}$?ys on the panel when state information is displayed; it also can be changed directly by external terminals UP/DOWN when they are enabled.
1 : Panel potentiometer
Operating frequency can be set by the potentiometer on the panel.

2 /3 : Preset of external analog voltage AI1 /AI2 Operating frequency not only can be set by the signal of external analog voltage($0.0 \sim 10.0 \mathrm{~V}$) sent out by Al 1 or Al 2 whose input voltage is formed by the synergy of internal +10 V power source and potentiometer. Al2 can be done through the signal of external analog current ($0 \sim 20 \mathrm{~mA}$) via J4 jumper.

4 : PI regulation
Precaution: Corresponding multi speed frequency will be applied firstly when external multi speed terminals are enabled.

For detailed information, please refer to the standard wiring diagram on Chapter 3.
5, 6 : frequency by external terminals given (note: each time the increase or decrease of a given frequency range be determined by the P5-20), when set to 6 , the frequency converter after every stop, zero frequency
7: When set to 7, the inverter's running frequency can be given by communication. The value of communication setting p0-03 (frequency digital setting), the up / down function is invalid at this time.

		$0:$ Controlled by keyboard
P0-02	Control mode	$1:$ Controlled by terminals,
	for	STOP Key disabled
	running	$2:$ Controlled by terminals,
		$3:$ Controlled by communication

- It's mainly applied to the instruction sources of booting, stopping or jog for converter.
 which stand for booting, stopping, jog or forward/reverse accordingly. 1 : [steg key will be disabled when converter is controlled by external terminals, including its booting, stopping, jog or forward/reverse running. 2 : [kitig key will be enabled when converter is controlled by external terminals, including its booting, stopping, jog or forward/reverse running. 3 : This will allow user to control the parameters by communication.

P0-03 \begin{tabular}{c|c|l|c|}
\hline Frequency

setting

$~$

$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency

$(\mathrm{P} 0-09)$

\quad

Default:

50.0 Hz
\end{tabular}

- Frequency of output can be set by setting this parameter only when P0-01 equals zero.

P0-04	Acceleration time 0	$0.1 \mathrm{~s} \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
P0-05	Deceleration time 0	$0.1 \mathrm{~s} \sim 3600.0 \mathrm{~s}$	Default: 20.0 s

- Acceleration time 0 : Time for converter to increase its frequency from OHz to maximum frequency ($\mathrm{P} 0-08$).
- Deceleration time 0 : Time for converter to decrease its frequency from maximum frequency $(\mathrm{PO}-08)$ to OHz .

Please refer to following graph.:

P0-06	Running direction option	$0:$ Default direction $1:$ Reverse direction	Default: 0

- Running direction can be preset through this parameter, which will also be taken as forward direction by default. It will also be chosen as a reference for reverse direction which is controlled by $\underbrace{\text { Jed }}_{\text {REV }}$ key as well as external terminals
0 : Converter will be running in default direction
1 : Running direction will be changed, which also means that it is changed by altering any two of motor wires(U, V, W).

| P0-07 | Anti-reversion | $0:$ Enabled
 Setting | $1:$ Disabled |
| :---: | :---: | :--- | :--- |\quad Default: 0

- Running direction will be controlled by parameter "P0-06" when reverse direction is disabled. Both 䐴 key and external terminals will be disabled.

P0-08

Maximum
Frequency

Upper limit frequency (P0-09) $\sim 400.0 \mathrm{~Hz}$

- The setting of Acc-Dec time is based on maximum output frequency of running.

P0-09	Upper limiting frequency	Lower limiting frequency (P0-10)~ Maximum frequency (P0-08)	Default: 50.0 Hz		
	P0-10	Lower limiting frequency	$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency (P0-09)		Default:
:---:					
0.0 Hz	C				

- It's mainly applied to the setting of the amplitude between upper limiting frequency and lower limiting frequency, which are also the range values of frequency regulation displayed on the panel potentiometer.
- These two parameters are also related to the amplitude of upper limiting voltage and lower limiting voltage set by AI1 or AI2. For detailed information, please refer to P5-00~08.

P0-11	Jog frequency	$0.0 \mathrm{~Hz} \sim$ Upper limiting frequency (P0-09)	Default: 5.0 Hz

- It's mainly applied to the setting of running frequency for jog.

P0-12 \begin{tabular}{c|c|c|c|}
Carrier

frequency

$\quad 1 \sim 16 \mathrm{KHz} \quad$

Default:

Depending

on model
\end{tabular}

- The switching frequency of interior power module is controlled by this parameter.

Audio noise and heat effect generated during the process of running are mainly affected carrier frequency. Carrier frequency must be increased slightly in order to achieve a quieter running; however, the maximum load will be decreased somehow at the same time, which may increase the risk of electric leakage between motor lines or between wires and earth. When ambient temperature is too high or there is too much load for motor, carrier frequency should be decreased properly to improve converter's thermal characteristics.

Generally, carrier frequency will be preset right before delivery; therefore, it doesn't need to be reset or modified. It should be used by derating if the carrier frequency which is being applied by operator exceeds the default value preset by factory.

$\begin{array}{c|l|l|}\hline \text { Carrier } \\ \text { frequency } \\ \text { Regulation }\end{array} \quad \begin{array}{l}0: \text { Regular PWM mode } \\ 1: \text { Random PWM mode }\end{array} \quad$ Default: 0$\}$

- Noise frequency of motor is fixed while running in regular PWM mode; frequency domain of noise is wider while the running of motor is set in random PWM mode.

P0-14	Keyboard frequency (UP/DOWN)	$0:$ Automatic storage when it powers down $1:$ No storage when it powers down	Default: 0

- It's mainly used to alter the operating frequency through $\boldsymbol{\square}$ keys or external terminals UP/DOWN. Whether a modified operating frequency would be saved in the parameter P0-03 after it powers down depends on the setting of this parameter.

P1: Human Interface parameters

P1-00	Default display information for Starting	0 : Setting frequency 1: Output frequency 2: Output current 3 : Bus voltage 4 : Rotational Speed of motor 5 : Percentage of output current 6: IGBT temperature 7 : Output voltage 8: Output power 9 : Count value 10 : PI index value 11: PI feedback value 12: Accumulated running time (hour) 13 : Input terminal status 14 : Output terminal status 15: Power	Default: 0

- It's mainly applied to the setting of default display information for starting.

Set Value	Status Information	Discriptions	Unit
0	[JПП	Preset Frequency	Hz
1	H D.	Output Frequency	Hz
2	$[\square]$	Output Current	A
3	$454 \square$	Bus Voltage	V
4	$\square \square$	Rotational speed of motor	$\mathrm{r} / \mathrm{min}$
5	$\square \square]$	Percentage of output current	
6	$\square \square$	IGBT Temperature	${ }^{0} \mathrm{C}$
7	\square	Output Voltage	V

8	$\mathrm{P} \quad \square \square$	Output Power	KW		
9	$\square \quad \square$	Count value			
10	\square	PI preset value			
11	3 1, 1	PI feedback value			
12	$r \quad \square$	Total run time	H		
13	$\|1\| 1\|11\| 1$	Status of input terminal			
14	DI\\|IIIl		Status of output terminal		
15	415.	Converter power	KW		

P1-01	Setting of display information	0:0~3 messages 1:0~7 messages 2:0~11 messages $3: 0 \sim 15$ messages	Default: 1

- It's mainly applied to the setting for how many messages are allowed to displayed on the panel. About the corresponding information for No. $0 \sim 15$, please refer to P1-00.

P1-02	Display coefficient of mechanical speed	$0.1 \sim 60.0$	Default: 29.0

- It's mainly applied to the adjustment of displayed value for the rotational speed of motor. Display coefficient of mechanical speed $=$ rotational speed of motor / operating frequency

P1-03	JOG $/$ REV Function selection	$0:$ Jog $1:$ FDW/REV switching	Default: 0

P2-05	Stop Mode	$0:$ Regular stopping $1:$ Stop by decelerating $2:$ Decelerating - DC braking - Stopping	Default: 1

- It's mainly applied to the setting of stop mode for converter.

0 : Regular stopping - the output of converter will be blocked immediately once stop instruction comes into effect.

1: Stopping by decelerating -- output frequency will be decreased slowly according to the preset deceleration time once stop instruction comes into effect; when it comes to zero, converter will be shut down.
2: Decelerating - DC braking - Stopping: output frequency will be reduced down to start frequency (P2-06) according to the preset deceleration time once stop instruction comes into effect; since then, DC braking will be enabled; after braking time(P2-08) is over, converter will be shut down.

P2-06	Start frequency of DC braking	$0.0 \sim 10.0 \mathrm{~Hz}$	Default: 2.0 Hz

- If parameter P2-05 equals two, it will be stopped through DC braking when converter reaches up to the corresponding frequency.

P2-07	Braking current before starting	$0 \sim 150.0 \%$	Default: 50.0%
P2-08	Braking current before starting	$0 \sim 50.0 \mathrm{~s}$	Default: 0.0 s

- Braking current for stopping means the amperage of direct current for braking; the higher the amperage is, the stronger the braking force will be.
Braking time for stopping means the time for increasing enough amperage of direct current to stop converter; when the value comes to zero, it means that there is no $D C$ braking during the process.

P2-09	Dead time of FWD $/$ REV	$0.0 \sim 50.0 \mathrm{~s}$	Default:
0.2 s			

- It mainly applied to the setting of transient time for zero output frequency during the transient process between forward and reverse.

Please refer to the following graph:

P2-10	Lower limiting frequency for running control	$0:$ running in lower limiting frequency $1:$ on stand by $2:$ stopping	Default: 0

- It's mainly applied to the setting of running status when preset frequency is less than lower limiting frequency.

0 : Converter will be running in lower limiting frequency if preset frequency is less than lower limiting frequency.

1: Converter will be shut down when preset frequency is less than lower limiting frequency; and it will be started again automatically when preset frequency is higher than or equivalent to lower limiting frequency.

2: This parameter is applicable to stop the converter in case that motor keeps running in a low speed.

P3: Parameters of Motor

P3-00	Rated frequency	F3 (P4-05) $\sim 400 \mathrm{~Hz}$	Default: 50.0 Hz
P3-01	Rated voltage	$200 \sim 440 \mathrm{~V}$	Default: Depending on model
P3-02	Rated current	$0.1 \sim 999.9 \mathrm{~A}$	Default: Depending on model
P3-03	Rated power	$0.1 \sim 630.0 \mathrm{KW}$	Default: Depending on model
P3-04	Rated rotational speed	$1 \sim 3600 \mathrm{rpm}$	Default: 1440 rpm

- These parameters above must be set according to the information of nameplates on the motor.
These parameters of motor must be accurate in order to improve the performance of self-adaptive control. These parameters of typical four-pole motor which is compatible with this converter by default are included, which should be input when the capacity of motor is not in conformity with that of this converter.

P3-05	No-load current	$0.1 \sim 999.9 \mathrm{~A}$	Default: Depending on model
P3-06	Stator resistance	$0.001 \sim 50.000 \Omega$	Default: Depending on model
P3-07	Excitation/Magnetic inductance	$0.1 \sim 5000.0 \mathrm{mH}$	Default: Depending on model

These parameters above are mainly applied to the setting of basic electrical parameters, which are essential to complete the algorithm of selfadaptive control.

If the capacity of the matched motor is also the same as that of typical motor, the default parameters can be applicable.

They can also be input manually if those precise parameters can be obtained in advance. All the internal default parameters will be restored automatically according to its model during the process of initialization.

Precaution : Do not change or modify these parameters casually.
P4: V/F Control Parameters

		$0:$ General V/F	
P4-00	V/F curve	$1: 2$ power V/F	$2: 3$ power V/F
	setting	$3:$ high starting torque V/F	
		$4:$ Self-setting V/F	Default: 0
		$5:$ Self-adaptive control	

- It's mainly applied to the setting of corresponding curves for output voltage and output frequency according to different conditions of loading.

0 : General V/F is generally applicable to constant load torque;
$1 / 2: 2$ or 3 power V/F is applicable to the operation with centrifugal load, for example draught fan or pump, etc.

3 : high starting torque V/F is applicable to the operating situations which require higher starting torque.

4 : Self-setting V/F indicates that V/F curve can be preset randomly by the functional codes P4-01~P4-06, which is applicable to the operation with special load, for example dewaterer or centrifuge, etc.

5 : Self-adaptive control can be applied to running regulation by adapting itself to actual load automatically, which is applicable to the operating situations which require greater low-frequency torque as well as strict control on speed.
Parameters must be set correctly according to the information of nameplate on the motor if this function needs to be enabled; it's only when the capacity of the motor is the same as that of this converter can its performance be improved greatly.

P4-01	V/F Intermediate frequency 1	$0.0 \mathrm{~Hz} \sim \mathrm{P} 4-03$ (Intermediate frequency 2)	$\begin{aligned} & \text { Default: } \\ & 1.0 \mathrm{~Hz} \end{aligned}$
P4-02	V/F Intermediate voltage 1	$0 \sim$ rated voltage (P3-00)	Default: $5 \mathrm{~V}$
P4-03	V/F Intermediate frequency 2	P4-01 (Intermediate frequency 1)~P4-05 (Intermediate frequency)	$\begin{aligned} & \text { Default: } \\ & 5.0 \mathrm{~Hz} \end{aligned}$
P4-04	V/F Intermediate voltage 2	$0 \sim$ rated voltage (P3-01)	$\begin{aligned} & \text { Default: } \\ & 25 \mathrm{~V} \end{aligned}$
P4-05	V/F Intermediate frequency 3	P4-03 (Intermediate frequency 2)~ P3-00 (rated frequency)	$\begin{aligned} & \text { Default: } \\ & 25.0 \mathrm{~Hz} \end{aligned}$
P4-06	V/F Intermediate voltage 3	$0 \sim$ rated voltage (P3-01)	$\begin{aligned} & \text { Default: } \\ & 115 \mathrm{~V} \end{aligned}$

- Multiple-phase V/F curves can be defined by these six parameters above (P4-01~ P4-06)
The set value of V/F curves is generally set according to the load characteristics of motor.
Precaution : motor may be overheated or even burned if preset lowfrequency voltage is too high, which may activate its over current protection. $\mathrm{V} 1<\mathrm{V} 2<\mathrm{V} 3, \mathrm{~F} 1<\mathrm{F} 2<\mathrm{F} 3$.

P4-07	Torque upgrade	$0.0 \sim 15.0 \%$	Default: 5.0

- This parameter can make compensation for output voltage when converter is running in a low frequency, so that the characteristics of lowfrequency torque which is controlled by V/F can be compensated and upgraded.
If the setting of torque upgrade is too high, not only motor tends to be overheated but also over current may be caused by it. In general, the setting of torque upgrade must be no more than 10%. To prevent converter from over current effectively, this parameter must be adjusted properly. This parameter should be increased whenever there is heavy load; otherwise, please decrease this parameter.

P4-08 \begin{tabular}{c|c|c|c|}
\hline Slip

compensation

$\quad 0.0 \sim 10.0 \mathrm{~Hz} \quad$

Default:

0.0 Hz
\end{tabular}

- The practical slip of motor varies from load to load. Output frequency can be adjusted automatically according to the condition of loading by this functional parameter, so that compensation can be made for the influence of load on rotational speed of motor.

		$0:$ Disabled	
P4-09	AVR	$1:$ always enabled function	: only enabled in process of deceleration
		Default: 0	

- AVR function is also known as Automatic Voltage Regulation function. Adjustment will be made automatically to stabilize output voltage whenever there is fluctuation of input voltage, so that it can prevent converter from overheat of motor caused by high output voltage or poor performance caused by low output voltage.

P4-10	Energy-efficient running	$0:$ Disabled $1:$ Enabled	Default: 0

- During the process of no-load or light-load running, output voltage can be adjusted properly to achieve automatic energy conservation by detecting load current. This parameter is applicable to the load of draught fan or pump.

P5: Input function parameters

P5-00	AI1 lower limiting value	$0 \sim 10.00 \mathrm{~V}$	Default: 0.05 V
P5-01	Corresponding setting for AI1 upper limit	$0 \sim 100.0 \%$	Default: 0.0%
P5-02	AI1 upper limiting value	Ai1 lower limiting value $\sim 10.00 \mathrm{~V}$	Default: 10.00 V
P5-03	Corresponding setting for AI1 upper limit	$0 \sim 100.0 \%$	Default: 100.0%
P5-04	AI1 input filtering time	$0.0 \mathrm{~s} \sim 10.0 \mathrm{~s}$	Default: 0.1 s

- The functional codes above define the relationships between analogue input voltage and corresponding setting of AI. Calculation will be based on the maximum or minimum one whenever analogue input voltage exceeds the range between preset maximum input and minimum input. The corresponding nominal value of analogue setting varies from situation to situation.
For detailed information, please refer to the relevant instructions for each parameter.

The following graphs are listed to demonstrate several situations of setting.
Precaution : Preset lower limiting value of Al1 must be less than or equivalent to preset upper limiting value of AI1.

The sensitivity of analog input is decided by Al1 input filtering time. The parameter must be increased to improve the anti-jamming capability which can prevent analog quantity from being interfered, so malfunctions can be reduced somehow; however, it may reduce the sensitivity of analog input.

P5-05	AI2 lower limiting value	$0 \sim 10.00 \mathrm{~V}$	Default: 0.05 V
P5-06	Corresponding setting for AI2 upper limit	$0 \sim 100.0 \%$	Default: 0.0%
P5-07	AI2 upper limiting value	AI2 lower limiting value $\sim 10.00 \mathrm{~V}$	Default: 10.00 V
P5-08	Corresponding setting for AI2 upper limit	$0 \sim 100.0 \%$	Default: 100.0%
P5-09	AI2 input filtering time	$0.0 \mathrm{~s} \sim 10.0 \mathrm{~s}$	Default: 0.1 s

- The setting of Al 2 function is similar to that of $\mathrm{Al} 1.0 \sim 20 \mathrm{~mA}$ input current is equivalent to $0 \sim 10 \mathrm{~V}$ input voltage when analogue input is preset as current input. $0 \sim 10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$ input can also be selected through jumper 4(J4).

P5-10	Multi-functional Input Terminal X1	0 : Disabled ; 1 : Forward 2 : Reverse 3 : Three-wire control 4 : Multi-phase reference velocity 1 5 : Multi- phase reference velocity 2 6 : Multi- phase reference velocity 3 7 : JOG forward 8 : JOG reverse 9 : Increasing frequency 10 : Decreasing frequency 11 : Acc-Dec time selection 1 12: Acc-Dec time selection 2 13 : Acc-Dec pause 14 : External fault Input 15 : Fault reset 16 : Freely stopping 17 : External count value input 18 : count clear 19 : program run 20 : pause of program run	Default: 1
P5-11	Multi-functional Input Terminal X2		Default:
P5-12	Terminal X3		efault: 14
P5-13	Multi-functional Input Terminal X4		efau
P5-14	Multi-functional Input Terminal X5 (CN1 needle base input)		Default: 5
P5-15	Multi-functional Input Terminal X6		eserved
P5-16	Terminal X7		Reserve
P5-17	Terminal X8		Reserved

- It's mainly applied to the setting of corresponding functions for digital mutil-functional input terminals.

Table of Functions

Set value	Functions	Descriptions				
0	Disabled	Please set unused terminals to be invalid to avoid malfunction. It's applied to the setting of terminals which have no function; those additional terminals can be set as nonfunctional terminals to prevent converter from malfunctioning				
1	Forward	Set the forward and reverse of converter. Please refer to description of P5-18 It's applied to the setting of terminals which control the running direction(forward/reverse) of converter; for detailed information, please refer to the instruction on Page5~18				
2	Reverse					
3	3-wire control	Please refer to description of P5-18 It's applied to the setting of three-wire control terminals (it's activated only when three-wire control is enabled); for detailed information, please refer to the instruction on Page5~18				
4	Multi-phase reference velocity 1	8 steps speed control can be realized by the combination of these four terminals. Eight kinds of speeds can be set through the combination of numbers which are decided by three terminals separately				
5	Multi-phase reference velocity 2	S_{3}	S_{2}	S_{1}	Frequency	Parameters
		0	0	0	Multi-phase reference velocity 0	P0-03
		0	0	1	Multi-phase reference velocity 1	P8-01
6	Multi-phase reference velocity 3	0	1	0	Multi-phase reference velocity 2	P8-02
		0	1	1	Multi-phase reference velocity 3	P8-03
		1	0	0	Multi-phase reference velocity 4	P8-04
		1	0	1	Multi-phase reference velocity 5	P8-05
		1	1	0	Multi-phase reference velocity 6	P8-06
		1	1	1	Multi-phase reference velocity 7	P8-07
7	Forward jogging	Set the jog forward and jog reverse of converter It's applied to the setting of terminals which control jogging direction (forward/reverse)				
8	Reverse jogging					
9	Increasing frequency (Up)	The reference frequency of inverter can be adjusted by UP command and DOWN command.				

20	Pause of program Run	Keep the converter in current running frequency when thE terminal is valid, and the running time is not include in program running time It can keep converter running in current frequency when terminals are enabled; during this period, running time is not count into the time of program run
$20-31$	Reserved	Reserved

- This parameter defines three different control modes of external terminals.

0: Two-wire control mode 1 is the most common two-wire mode, which can make directions conformed with each other; Forward or reverse direction will be decided by the instructions from FWD/REV terminals.

1: Two-wire control mode 2 can keep directions separated with each other; FWD terminal will be enabled while this mode is enabled; but direction will be decided by REV.

| K1 | K2 | Command
 code |
| :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | Stop |
| OFF | ON | Stop |
| ON | OFF | Forward |
| ON | ON | Reverse |

2-wire control mode 2
2: Rising edge of pulse and terminal SIn will be enabled while three-wire control mode 1 is enabled; direction is controlled by REV key; stop signal is controlled by input terminal SIn. The function of corresponding input terminal is defined by SIn terminal as No. 3 function "three-wire control".

3: Rising edge of pulse and terminal SIn will be enabled while three-wire control mode 2 is enabled; run command is controlled by both REV of FWD keys which control the running direction at the same time; stop signal is generated by a on instant input terminal SIn. The function of corresponding input terminal is defined by SIn terminal as No. 3 function "three-wire control".

Tips: As for two-wire control mode, with the premise of the following two points, even control terminals FWD/REV remain enabled, converter will not be running any more after stop signal disappears:
1.FWD/REV terminals are enabled;
2.Converter is shut down because of stop signal generated by the other source; FWD/REV terminals must be enabled again if converter needs to be started.
P5-19 $\left.\begin{array}{c|c|c|c|}\hline \text { Terminal filtering } \\ \text { mode }\end{array} ~ 2 \mathrm{~ms} \sim 100 \mathrm{~ms} \quad \begin{array}{c}\text { Default: } \\ 10 \mathrm{~ms}\end{array}\right]$

- It's mainly used to set the sensitivity of terminals from X1 to X8. The parameter must be increased to improve the anti-jamming capability which can prevent DI terminals from being interfered, so that malfunctions can be reduced somehow; however, it may reduce the sensitivity of DI terminals.

P5-20	The range of the UP/DOWN increasing decline	$0.0 \sim 50.0 \mathrm{~Hz}$	0.1

- When frequency increment/decrement with external terminal set, every time the frequency of the increase or decrease in value is decided by the P5-20.

P5-25	Comm.	$2: 1200$	$3: 2400$	5
	Baud Rate	$4: 4800$	$5: 9600$	5
	$6: 19200$	$7: 38400$		

- This parameter is used to set the data transmission rate between the host computer and the frequency converter. Note that the baud rate set by the host computer and the frequency converter must be the same, otherwise communication can not be carried out.

P5-26	Modbus	$0: 8-\mathrm{N}-1$	$1: 8-\mathrm{N}-2$	0
	Data Format	$2: 8-\mathrm{E}-1$	$3: 8-\mathrm{O}-1$	

- The data format set by upper computer and frequency converter must be the same, otherwise, communication can not be carried out.

P5-27	Response Delay	$0 \sim 200 \mathrm{mSec}$	20

- Response delay: refers to the interval between the receipt of converter data and the sending of data to the host computer. If the response delay is less than the system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system will delay waiting until the response delay time arrives before sending data to the host computer.

Table of Output Functions

Set value	Functions	\quad Descriptions
0	Disabled	Output terminals without any function
1	Running	When the converter is running, output the close signal It means that converter is running; closed signal is output.
2	Direction	On run reverse, output the close signal It indicates the running direction of converter; closed signal is output when it's running in reverse direction.
3	Fault output	When the converter is out of work, output the close signal Closed signal is output when it's malfunctioning.
4	On standby	Establish main circuit and control circuit power, the protection function of the converter is not change, and the converter is running, output the close signal Major loop and control circuit are established; protection function isn't enabled; converter is on standby; closed signal is output.
5	Frequency received	FDT Please refer to the explanations of function code PA-11~13
6	Upper limiting frequency received	ON: Running frequency reaches the value of P0-09 Signal "ON" is output when running frequency reaches upper limiting frequency
8	Lower frequency limiting received	ON: Running frequency reaches the value of P0-10 Signal "ON" is output when running frequency is equivalent to or lower than lower limiting frequency
9	Setting count value received	ON: the value of count reach the setting value of PA-14 Signal "ON" is output when count value reaches the value set by PA-14.
10	Designated count value received	ON: the value of count reach the setting value of PA-15 Signal "ON" is output when count value reaches the value set by PA-15.
Reserved	Reserved	
R	Red	

		$0:$ Operating frequency	
P6-03	Aol options	$1:$ Output current	Default: 0
		$2:$ Bus voltage	
		$3:$ Output voltage	

- The standard range of analogue input current/voltage is $0 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V}$, which can be selected by Jumper 5. Output signals can be selected by the setting of this parameter, which correspond to output frequency or output current of converter.
Corresponding range of $\mathrm{AO}(0 \sim 10 \mathrm{~V} / 0 \sim 20 \mathrm{~mA})$ is as followed :

Set value	Functions	Descriptions
0	Running frequency	$0 \sim$ upper limiting frequency
1	Output current	$0 \sim$ double rated current
2	Bus voltage	$0 \sim$ double rated voltage
3	Output voltage	$0 \sim$ double rated voltage

P6-04	AO correction coefficient	$0.0 \sim 250.0 \%$	Default: 100.0%

- It's mainly not only applied to the correction of analogue output voltage but also used to adjust the range of analogue output voltage. Analog output voltage $=$ Analogue output voltage $\times \mathrm{AO}$ correction coefficient
- If the set value of parameter P6-03 is zero while the set value of parameter P6-04 is 100\%, the corresponding AO of upper limiting frequency is $+10 \mathrm{~V}(20 \mathrm{~mA})$. AO correction coefficient can be increased properly to calibrate the analogue output voltage if practical AO is only 9.8 V because of differences of circuit.

P6-05	Stop delay time setting	$0 \sim 3000.0 \mathrm{~S}$

- When the inverter output signal when stop the machine open, until the P6-05, the output signal to shut down.

P7: PI control parameters

PI control is a common method to control the process. Output frequency can be adjusted by proportion \& integral operations on the difference between the feedback signals of controlled variable and signals of objective variables.

		$0:$ Digital keyboard	
P7-00	PI preset source	$1:$ Panel potentiometer	
	options	$2:$ Analog channel AI1	Default: 0
		$3:$ Analog channel AI2	

- This parameter functions if PI is chosen as frequency source, which means that the selection of P0-01 is option 4. The preset channel of objective variables for Pl is determined by this parameter. The setting objective variables of PI are relative value; the percentage of the setting(100\%) corresponds to the percentage of feedback signal(100\%) in the controlled system. And operation is proceeded by the system according to the relative value(0~100\%).

P7-01	PI set value	$0.00 \sim 10.00 \mathrm{~V}$	Default: 0.00 V

When P7-00 equals zero, PI set value will be set by this parameter.

P7-02	PI feedback source options	0 : Analog channel AI1 $1:$ Analog channel AI2	Default: 0

PI feedback channel is determined by this parameter.

P7-03	PI output characteristics options	$0:$ Positive $1:$ Negative	Default: 0

Positive PI output characteristics: output frequency must be lowered to make it balance when the value of feedback signal is greater than PI set value, for example PI control on winding tension.

Negative PI output characteristics: output frequency must be increased to make it balance when the value of feedback signal is greater than PI set value, for example PI control on unwinding tension

P7-04	Proportional gain (P)	$0.0 \sim 10.0$	Default: 1.0
P7-05	Integral time (I)	$0.0 \sim 100.0 \mathrm{~s}$	Default: 0.1 s

Proportional gain (P) determines the intensity of adjustment of Pl regulator; the larger P value is, the higher the intensity of adjustment will be.

Integral time (I) determines the speed of integral regulation on the difference between PI feedback quantity and given quantity. The less integral time is, the higher the intensity of adjustment will be.

PI is the most common control method for process control; the function of each part is different from each other's. Please refer to the following brief introduction of operating principles and regulation methods:

Proportional gain (P): There will be proportional adjustment between output and deviation if there is difference between feedback value and set value; if deviation is constant, regulating variable is also constant. Proportional control responses to the change of feedback quickly; however, error control can't be proceeded only by proportional control. The greater proportional gain is, the smaller adjusting speed of system will be. But the proportional gain is excessive, it may cause vibration. The adjustment method is to extend the integral time and make system running only by proportional control; meanwhile, set value should be changed in order to observe its stable deviation(static error) between feedback signal and given quantity; if static error is in compatible with the change of given quantity, proportional gain can be increased continuously, for example increasing given quantity, or feedback quantity is always less than given quantity after system is stable; otherwise, please reduce it. The instruction above should be implemented repeatedly until deviation is optimized/minimized(tips: zero offset is almost impossible).

Integral time (I): when there is difference between feedback value and set value, regulating variable of output should be accumulated continuously; if the deviation can't be eliminated, the regulating variable should be increased continuously until there is no deviation. Deviation can be eliminated effectively by integral controller. However, overshoot may be caused repeatedly if the adjustment of integral controller is too much, which makes system unstable and even causes vibration. If vibration is caused by excessive integral action, following characteristics can be observedoscillation of feedback signal on given quantity, expanding amplitude of oscillation, even vibration. The parameter of integral time should be adjusted generally from maximum value to minimum value so that the integral time can be changed gradually. Observation should be made on the effect on the system. Adjustment can't be stopped until the sable speed of system meets the requirements.

P7-06

| Deviation limit
 of PI control | $0.00 \sim 2.00$ |
| :---: | :---: | Default:

Deviation limit of PI control defines the comparison between PI system output and maximum deviation value which is limited by closed-loop set value. As is shown in the graph, PI regulator is shut down while it's within deviation limit. The precision and stability of PI system can be improved by setting this function code properly.

Sampling period
(T)

$$
0.1 \sim 100.0 \mathrm{~s}
$$

Default: 0.02 s

Sampling period (T) means sampling period of feedback quantity; operation is performed by regulator once every one sampling period. The longer sampling period is, the slower response will be.

P7-08	Detected value of feedback disconnection	$0.00 \sim 5.00$	Default: 0.0
P7-09Time for detecting feedback disconnection	$0.0 \sim 100.0 \mathrm{~s}$	Default: 10.0 s	

The feedback variable of PI can be always detected by system; if feedback variable is less than the detected value of feedback dis-connection, system will consider feedback signal to be disconnected by default; if feedback variable is still less than the detected value of feedback disconnection while actual time is more than the time for detecting feedback disconnection, PIE can be detected and sent out by the system.

P7-12	Sleep time	$0 \sim 3000 \mathrm{~s}$	600
P7-13	Dormancy pressure	$0 \sim 10.00$	0
P7-14	Dormancy frequency	$0 \sim 50.0 \mathrm{~Hz}$	0
P7-15	Wake up the pressure	$0 \sim 10.00$	0

- Dormancy function description: when the back pressure value > dormancy pressure (P7-13), the frequency of running < dormancy frequency (P7-14). Waiting for the time of sleep (P7-12), began to sleep. When the pressure of the feedback < wake up pressure (P7-15), will cease to dormancy, inverter will run again.
1.1 Dormancy frequency (P7-14) Settings:

In under the condition of no water or gas, make the inverter running in the PID control mode (P0-01 = 0 or 1), start the inverter. Observation line pressure, slowly increase the frequency to the target according to user's requirements, record the current operating frequency after downtime. Set the dormant frequency (P7-14) just above the record frequency of 1-3 hz or so.
1.2 dormancy pressure (P7-13) set: dormancy pressure value slightly smaller than the target value.
1.3 when a dormant frequency P7-14 = 0 or resting pressure P7-13 = 0 , don't start the sleep function.

P8: Simple PLC and Multispeed Parameters

		$0:$ Disabled	
P8-00	Program run	$1:$ Program stop after one-cycle running	
	modeProgram operates as last program runs after one-cycle running $3:$ Circulatory running of program		

0: Disabled
1: Program stop after one-cycle running
Converter will be stopped automatically after one-cycle running; only after run command is entered again will it be started.
2: Program operates as last program runs after one-cycle running
The operating frequency and direction in the last program will be remained to the end after one-cycle running.
3: Circulatory running of program
The next cycle of operation will be proceeded by converter automatically right after one-cycle running; system will not be shut down until stop command is received.

P8-01	First phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 11.0 Hz
P8-02	Second phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 12.0 Hz
P8-03	Third phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 13.0 Hz
P8-04	Forth phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 14.0 Hz
P8-05	Fifth phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 15.0 Hz
P8-06	Sixth phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 16.0 Hz
P8-07	Seventh phase speed	Lower limiting frequency \sim Upper limiting frequency	Default: 17.0 Hz

These parameters above are mainly applied to the setting of seven different phase speeds; principal frequency is still controlled by parameter P0-03.

P8-08	Runtime of principal frequency	$0 \sim 6400.0$	Default: 0.0
P8-09	First phase time	$0 \sim 6400.0$	Default: 0.0
P8-10	Second phase time	$0 \sim 6400.0$	Default: 0.0
P8-11	Third phase time	$0 \sim 6400.0$	Default: 0.0
P8-12	Forth phase time	$0 \sim 6400.0$	Default: 0.0
P8-13	Fifth phase time	$0 \sim 6400.0$	Default: 0.0
P8-14	Sixth phase time	$0 \sim 6400.0$	Default: 0.0
P8-15	Seventh phase time	$0 \sim 6400.0$	Default: 0.0
P8-16	Time unit of multi-velocity	$0:$ second $1:$ minute $2:$ hour	Default: 0

These parameters from P8-08 to P8-15 are mainly applied to the setting of run time for the velocity of each phase. Time unit can be preset by parameter P8-16.

P8-17	Running directions of programs	$0 \sim 255$ BIT 0~7 indicates 0~7 directions (0: Forward 1: Reverse)	Default: 0

It's mainly applied to the setting of running directions for each program, which is preset by binary mode (8 bit). Parameter can be entered only after the binary value is converted into decimal value. Take the following settings for example:

Parameter values $=$ bit $7 \times 2^{7}+$ bit $6 \times 2^{6}+$ bit5 $\times 2^{5}+$ bit $4 \times 2^{4}+$ bit $3 \times 2^{3}+$ bit2 $2 \times 2^{2}+$ bit $1 \times 2^{1}+$ bit0 $\times 2^{0}$ $=0 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$=0+64+0+0+8+0+2+0$
$=74$
Namely (01001010)2 = (74)10
Hence P8-17 should be set as 74

P8-18	Timing for each program's Acc-Dec	$0 \sim 65535$ BIT 0~15 indicates the ACC/DEC time of 0~7	Default: 0

It's mainly applied to the setting of Acc/Dec time for each program, which is preset by binary mode (16 bit). Parameter can be entered only after the binary value is converted into decimal value.

Take the following settings for example:

Parameter values $=(0000000011100100)_{2}=(228)_{10}$
Hence the P8-18should be set as 228

P9 : Protection Function parameters

P9-00	Options for overload protection	$0:$ Disabled $1:$ Enabled	Default: 0
	Critical point of overload protection	$50 \sim 120 \%$	Default: 110%

These two parameters are mainly applied to the setting of realtime relay protection of load motor. Effective thermal protection of motor can be achieved by setting this parameter correctly when rated current of motor is not matched with rated current of converter. Critical point of overload protection $($ motor $)=($ allowed max. load current $/$ rated current of motor) * 100\%

P9-02	Overload protection	$0:$ Disabled $1:$ Enabled	Default: 1
P9-03	Critical point of Over voltage	$110.0 \sim 150.0 \%$	Default: 118

Due to the influence of inertia load, actual droop rate of motor's rotational speed may be lower than droop rate of output frequency while converter is decelerating; meanwhile, electrodes may feedback electric energy to converter, which may raise the bus voltage of converter. If no action is taken in time, stripping may be caused by over voltage of busbar.

Over voltage protection function will be enabled so that the decreasing output frequency of converter can be slowed down if bus voltage detected by converter while running exceeds the critical point of over voltage defined by parameter P9-03(in comparison with standard bus voltage); if it's detected that the bus voltage is lower than the critical point, converter will continue to decelerate again.

P9-04	Over current protection	$0:$ Disabled $1:$ Enabled	Default: 1
P9-05	Critical point of over-current	$100 \sim 180 \%$	Default: 180

Because of excessive load, actual rate of rotational speed rise of motor may be lower than the rate of output frequency rise while converter is decelerating; if no action is taken in time, stripping may be caused by over current.

Over-current protection function will be enabled so that increasing output frequency of converter can be slowed down if bus current detected by converter while running exceeds the critical point of over current defined by parameter P9-05; if it's detected that output current is lower than the critical point, converter will continue to accelerate again.

P9-06	Phase-failure protection of input	$0:$ Disabled $1:$ Enabled	Default: 0
	P9-07	Phase-failure protection of output	$0:$ Disabled $1:$ Enabled

Phase-failure protection of input: options are selected to enable or disable phase-failure protection for input Phase-failure protection of output: options are selected to enable or disable phase-failure protection for output

P9-08	Latest fault information	$0 \sim 21$	
P9-09	Latest fault information	$0 \sim 21$	
P9-10	Last two fault messages	$0 \sim 21$	

These parameters above can't be modified or changed; they are read-only. The latest three fault types can be recorded by converter:
Zero means there is no malfunction
1~21 stands for twenty different malfunctions; for detailed information, please refer to Chapter 7 "Fault Correcting".

P9-11	Operating frequency of latest fault		
P9-12	Output current of latest fault		
P9-13	Bus voltage of latest fault		
P9-14	Input state of latest fault		
P9-15	Output state of latest fault		

These parameters above can't be modified or changed; they are readonly. Status information about the latest malfunctions can be recorded by converter, including its operating frequency, current and voltage.

P9-16	Fault since the reset function	0: invalid 1: under-voltage fault automatic reset(unlimited) 2~20: fault self-recovery alarm	0

- Please set this function carefully, to ensure that the fault occurs again after the operation of the safety of person or equipment.
- After $2 \sim 20$: frequency converter fault alarm automatically reset the number of times. Under-voltage alarm reset is always valid.

Prameters of PA Enhancements

PA-00	Acceleration time 1	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
PA-01	Deceleration time 1	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
PA-02	Acceleration time 2	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
PA-03	Deceleration time 2	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
PA-04	Acceleration time 3	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s
PA-05	Deceleration time 3	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 20.0 s

Acc/Dec times are available to be selected, included three kinds of $\mathrm{Acc} / \mathrm{Dec} \mathrm{times} \mathrm{above}, \mathrm{P0-04} \mathrm{and} \mathrm{P0-05} .\mathrm{They} \mathrm{are} \mathrm{all} \mathrm{the} \mathrm{same} \mathrm{in} \mathrm{definition;}$ for detailed explanations, please refer to P0 series.
Acc/Dec time 0~3 can be selected through different combinations of multifunctional digital input terminals.

PA-06	Jog acceleration time	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 5.0 s
PA-07	Jog deceleration time	$0.0 \sim 3600.0 \mathrm{~s}$	Default: 5.0 s

These two parameters above are applied to the definition of Acc/Dec time for jogging which can be started or stopped through direct starting or stop by decelerating.
Jog acceleration time indicates the time for converter to accelerate from 0 Hz to maximum frequency (P0-08).
Jog deceleration time indicates the time for converter to decelerate from maximum frequency ($\mathrm{P} 0-08$) to 0 Hz .

PA-08	Hopping frequency 1	$0.0 \sim$ Upper limiting frequency (P0-09)	Default: 0.0 Hz
PA-09	Hopping frequency 2	$0.0 \sim$ Upper limiting frequency (P0-09)	Default: 0.0 Hz
PA-10	Amplitude of Hopping frequency	$0.0 \sim$ Upper limiting frequency (P0-09)	Default: 0.0 Hz

Actual operating frequency will be held at the boundary of hopping frequency which is closed to preset frequency when preset frequency is within the range of hopping frequency.

Converter can be kept away from the resonance point of load by the setting of hopping frequency. Two hopping points of frequency are set for this converter; if both of these two points are set as zero, this function will be disabled.

PA-11	FDT level value	0.0~Upper limiting frequency (P0-09)	Default: 0.0 Hz
PA-12	FDT lagged value	$0.0 \sim$ FDT level value (PA-11)	Default: 0.0 Hz

These two parameters above are mainly applied to the setting of the detected value of output frequency (PA-11) as well as lagged value obtained after output is enabled.

- It's mainly applied to the setting of amplitude detection for detected frequency.

Please refer to the following graph:

PA-14	Setting count value	$1 \sim 65535$	Default: 10
PA-15	Specified count value	$1 \sim 65535$	Default: 10

Counts of pulse signal or switching signal can be input by the counter which is installed in the multi-functional DI terminal.

When count value reaches up to preset count value, signal will be output by DO terminal to prove that preset count value is reached.

When count value reaches up to specified count value, signal will be output by DO terminal to prove that specified count value is reached. Counter will not stop until it reaches up to "setting count value"

Specified count value PA-15 must be no more than setting count value PA-14.

PA-16	Underclocking function for overload	$0:$ Disabled $1:$ Enabled	Default: 1

Converter's current will also be increased as abnormal load transient boosts instantaneously; if no action is taken in time, stripping may be caused by over current.

Under clocking function for overload: if instantaneous current is increased up to the maximum, output frequency of converter must be decreased properly to restrain current from being increased so that converter can be prevented from stripping caused by instantaneous overload.

FAULT CORRECTING
7-1 Malfunction and Solutions

Fault indication	Code	Fault type	Fault cause	Solutions
LU	3	Under voltage	Abnormal power supply or loose contact	Input voltage and wiring should be checked
OU	4	Over voltage	1. Input voltage 2. Rapid deceleration 3. Excessive inertia load	1. Check input voltage 2. Increase deceleration time 3. Select dynamic braking components
OC	6	Over current	1. Mismatch of capacity 2. Low voltage of grid 3. Rapid acceleration and deceleration 4. High torque of inertia load 5. Abnormal load	1. Select converter with large capacity 2. Check power source and wiring 3. Increase Acc-Dec time 4. Select applicable braking parts 5. Detect and reduce load changing
OL	5	Overload (Converter)	1. Please refer to fault cause of over current (OC) 2. Overload (motor) 3. Inapplicable setting of V/F curve	1. Please refer to solutions for over current(OC) 2. Reduce motor load 3. Reset parameters
OL1	15	Overload (Motor)	1. Low voltage of grid 2. Excessive motor stalling or load changing 3. Inapplicable setting of V/F curve, rated current or critical point of overload protection	1. check the voltage of grid 2. check motor load 3. reset parameters

$\left.$| Fault
 indication | Code | Fault type | Fault cause | Solutions |
| :---: | :---: | :---: | :---: | :---: |
| NCE | 16 | Contactor
 fault | 1. low voltage of grid
 2. damage of
 contactor | 1. Check the voltage of
 grid
 2. the other damaged
 circuit | | 2. Replace the contactor |
| :--- |
| of major loop |
| 3. Seek technical support |
| for damages | \right\rvert\,

7-2 Common Faults and Processing Schemes

If the following situations are met during the application of converter; please refer to the instructions below:

- No information display after power on

Please confirm whether the voltage of power source is compatible with the rated voltage of converter.

Please check whether three-phase rectifier bridge is in good condition; if it's damaged, please seek for technical support.
Please check if power indicator is on or not; if it's off, malfunction is mainly caused by abnormal rectifier and buffer resistance; if it's on, malfunction is mainly caused by switching power supply. Meanwhile, please seek for technical support.

- Air switch of power source trips when power on

Please check whether power source is grounded or short-circuited; please solve it accordingly.
Please check whether rectifier bridge is burned; if it's damaged, please seek for technical support.

- Motor doesn't start running after converter is started

Please check whether there is three-phase symmetrical output among U, V, W. If there is, motor or its circuit is damaged mostly; or stalling may be caused by mechanical problem. please solve it accordingly.
If three-phase output is unsymmetrical, then driver board or output module of converter may be damaged. Please seek for technical support.
If there is output voltage, then driver board or output module may also be damaged.

Please also seek for technical support.

- Air switch of power source trips while running

Please check whether output modules between phase and phase are short-circuited; if there is short circuit, please seek for technical support.
Please check whether motor lines are short-circuited or grounded; if they are, please solve it accordingly.
If stripping take places sometimes, not regularly; and there is a long distance between motor and converter, please take the installation of additional AC reactor into consideration.

MAINTENANCE

Only the qualified engineer is allowed to conduct maintenance for converter; please pay attention to the following precautions:

- Maintenance must be conducted by qualified engineer in specified way;
- Only when converter is shut down for 5 minutes can maintenance be conducted;
- Do not touch the components on the PCB directly; otherwise, components can be damaged by static easily.
- Make sure that all the screws are fastened after the maintenance.

8-1 Daily Maintenance and Upkeep

Affected by environmental conditions(e.g. temperature, humidity or smog) and aging of internal components, converter may malfunction. Therefore, daily inspection and maintenance on converter must conducted during the process of storage and application. For the detailed information of daily inspection and maintenance, please refer to the following table:

Items	Examination period		Check points	$\begin{array}{c}\text { Criterion and } \\ \text { Maintenance }\end{array}$
	regular			V
2. Dust \& mist				

humidity<90 \% , no frost

2. No odor, No flammable

or explosive gas\end{array}\right]\)

Items	Examination period		Check points	Criterion and Maintenance
	regular		1. Vibration and temperature rise 2. Noise	1. Stable operation and normal temperature
2. No malfunction or abnormal noise				
I/O parameters	V		1. Input voltage 2. Output current	1. Input voltage is within specified range 2. Output current is lower than rated value

8-2 Inspection and replacement of damageable parts

As for some of internal components, abrasion or performance degradation may be caused during use. To ensure stable and reliable operation, preventive maintenance on converter must be conducted. If necessary, please replace them:

Fan must be replaced after more than 20,000 hours' running. Electrolytic capacitor must be replaced after 30,000~40, 000 hours' running

8-3 Storage

This product can't be taken out from box until it's about to be installed. To ensure that it's still valid for warranty and available for maintenance in the future during the period of storage, please pay attention to the following points:

- Converter must be stored in a dry place where there is no dust;
- Ambient temperature must be within the range between $-20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$;
- Relative humidity must be within the range between 0% and 95%; no condensation is permitted;
- It must be protected from caustic gas or liquid;
- It must be packed properly and put on the shelf or desk.

8-4 Product Warranty

Any of the following situations will be our company's responsibility, which will be considered and guaranteed:

- The warranty period for this product is 18 months but only 12 months for final buyer. During the period, any damage or fault without any wrong operation will be our responsibility to fix, which is free of charge. Maintenance fee will be charged accordingly if warranty expires.
- Regarding the faults caused by the following points, extra fee will need to be charged as service fee:

1. Fault caused by faulty operation which is not in conformity with manual or specification
2. Fault caused by unauthorized maintenance modification;
3. Damage caused during the transportation or improper safekeeping;
4. Fault caused by misuse failure
5. As for the damages caused by fire, salt corrosion, gaseous corrosion, earthquake, storm, flood, thunder strike, abnormal voltage and other irresistible factor, despite of the expiration of warranty, any compensable maintenance service will be provided by our company for good.

COMMUNICATION PROTOCOL

Modbus protocol is the main communication method applied in FD100 \& FD200 series converter with RS485 interfaces, which is compliant with International Communication Standards. Centralized control can be implemented by PC/PLC as well as superior controller to adapt specific requirements for applications, including setting of control command, operating frequency, modification of parameters for relevant function code, monitoring of operating status or malfunction.

9.1 Protocol Content

Modbus, also known as serial communication protocol, has defined its frames and format during the asynchronous transmission, including the format of polling to the host, broadcast frames and response fames to slave controller. The frames generated by the host included slave address/broadcast address, executive command, data \& error correction; and the response of the slave controller has the similar frames as the host, including confirmation of instructions, data feedback and error correction. If any error happens when the slave controller receives the frames, or any instruction requested by the host can't be done, it will generate a malfunction frame and send feedback to the host.

9.1.1 Application mode

FD100 \& FD200 series converter is compatible with control network equipped with RS485 bus which has single host \& multiple slave controllers.

9.1.2 Bus Structure

1. Hardware interface RS485 hardware interface
2. Transmission mode

Serial \& asynchronous, half-duplex transmission -TXD and RXD can be done at the same time by either the host or the slave controller separately, which means there are only one sender and one receiver at a time. Data will be transmitted frame by frame in the format of message during the serial \& asynchronous communication.
3. System with single host \& multiple slave controllers

The range of slave address should be 1~127; the number Zero stands for broadcast communication address. Every single salve address on the Internet is unique, which is the foundation of Modbus serial communication.

9.2 Protocol Introductions

The protocol of FD200 Series Converter is a kind of serial \& asynchronous communication protocol with principal and subordinate Modbus; there is only one device(host) could set up protocol (named "query /command"), and the other devices(slave) can only response to the host's "query /command" by sending data, or issue commands/instructions according to the "query /command" from the host. The host herein mainly refers to personal computer, industrial control facility or Programmable Logic Controller (PLC); and the slave herein mainly refers to FD200 Series Converter or the other control facilities with similar/same communication protocol. The host can not only communicate with a certain slave controller independently but also send broadcast message to all the slave controllers. As to any independent access to the host's "query /command", a message (called response) must be sent out from the slave controller; however, regarding the broadcast message issued by the host, it's not necessary for the slave controller to send feedback to the host.

9.3 Frame Structure

The data format of Modbus communication protocol applied in the FD200 Series Converter is RTU mode (Remote Terminal Unit)

In the RTU mode, the format of each byte is as follow: encoding system -8-bit binary system, there are two hexadecimal characters included in every 8-bit frame (hexadecimal characters include 0~9 \& A~F). The transmission of new frame will always be restarted with a interval of 3.5 bytes transmission time. When it's connected with the Internet of which transmission rate is calculated by Baud rate, 3.5-byte transmission time is easy to be controlled. The data fields of transmission will be sent in sequence as below: slave address - operating command code - data \& CRC check word; and transmission byte of each field are hexadecimal (0~9, A~F). The networking devices will always monitor the operation of communication bus; when the first domain (address information) is received, it will be confirmed again by each networking device; when the transmission of last byte is done, there will be a interval of 3.5 bytes transmission time to identify the end of this frame. After that, transmission of new frame will be started again.

Frame Format of RTU Data					
	MODBUS Message				
Initiate: a interval of at least 3.5 bytes	Slave address	Function code	Data	Verification	Terminate: a interval of at least 3.5 bytes

A frame message must be transmitted in a consecutive data stream; if the interval is more than 1.5-byte transmission time before transmission of the whole frame is finished, those incomplete messages will be cleared by the receiver which will take the next byte as part of address field of new frame by mistake; likewise, if the interval is less than 3.5-byte transmission time, the receiver will identify it as the extension of last frame. Because of disorder of frames, CRC value will be incorrect, which may result in malfunction.
Standard Structure of RUT Frame :

Frame header	T1-T2-T3-T4 (3.5-byte transmission time)
Slave address field	Communication address: 0~147(decimal system) / (Zero stands for broadcast communication address)
Function domain (CMD)	0x03: reading parameters of slave controller 0x06: programming parameters of slave controller
Data field ENTER (N-1) \ldots ENTER (0)	2*N-byte data is not only the main content of communication but also the core of data exchange during the communication.
Checksum	Estimated value: CRC value (16BIT)
Frame ending	T1-T2-T3-T4 (3.5-byte transmission time)

9.4 Command code \& data description

9.4.1 Format of No. 1 address for Setting as follows, setting frequency 50 Hz (PO-03)

Superior host command:

Frame header	3.5 -byte interval
Address	0×01
Function code	0×06
Register address	0×0003
Register information	$0 \times 01 \mathrm{~F} 4$
Checksum	$0 \times 79 \mathrm{DD}$
END	3.5 -byte interval

Converter's response:

Frame header	3.5-byte interval
Address	0×01
Function code	0×06
Register address	0×0003
Register information	0x01F4
Checksum	0x79DD
END	3.5 -byte interval

9.4.2 Format of No. 1 address for reading as follows, setting frequency (PO-03)

Note: register number must be one only when reading

Superior host command:
Converter's response:

Frame header	3.5-byte interval
Address	0×01
Function code	0×03
Register address	0×0003
Register information	0×0001
Checksum	0x740A
END	3.5-byte interval

Frame header	3.5-byte interval
Address	0×01
Function code	0×03
Register address	0×02
Register information	$0 \times 01 \mathrm{~F} 4$
Checksum	$0 \times B 853$
END	3.5-byte interval

9.4.3 Frame format of response error as follows, setting frequency 60 Hz (PO-03)
Type of error:
01H - Data address overrun
02H - Number of data overrun \& read-in data content exceeding bounds (ceiling \& floor)
03H - Operating, no read-in data are permitted

Superior host command:

Frame header	3.5-byte interval
Address	0×01
Function code	0×06
Register address	0×0003
Register information	0×0258
Checksum	0×7950
END	3.5-byte interval

Frame header	3.5 -byte interval
Address	0×01
Function code	0×86
Error code	0×02
Checksum	$0 \times C 3 A 1$
END	3.5 -byte interval

9.4.4 CRC Mode

RTU frame format is mainly applied to CRC (Cyclical Redundancy Check), error detecting field based on CRC is included in the message. CRC domain can detect all the information of message, which is two bytes with 16bit binary value included. It will be added into the message after the calculation of transmission devices. The receiver will recalculate the CRC receiving the message, and compare it with the values in the CRC domain received by devices; if the CRC value is not equivalent to another one, it proves that there is error in the transmission.

CRC will write 0xFFFF in superior host, and call a program to process the consecutive 8 bytes in the message as well as the values in the register. Only 8-bit data of each character is valid to CRC, the others are all invalid, including start bit, stop bit and parity check bit.

During the operation of CRC, each of 8 -bit character is exclusive(XOR) with register content separately; result will be inclined to the least significant bit(LSB) while the most significant bit will be filled with Zero. LSB will be extracted from the data for checking; if LSB is one, register will be exclusive(XOR) with preset value separately; if LSB is zero, calculation will not be conducted. This instruction of process will repeat for 8 times; when it comes to the last bit (8th bit), the next 8-bit bytes will be exclusive(XOR) with register value again. The final value in the register is the CRC value after the calculations of all the bytes in the message.

When CRC is added into the message, lower byte will be added first, then the high byte. The simple function of CRC is as follows:
unsigned int crc_chk_value (unsigned char*data_value,unsigned char length) \{
unsigned int crc_value $=0 \times$ FFFF;
inti;

$$
\begin{aligned}
& \text { while (length--) } \\
& \text { crc_value }{ }^{\wedge=} \text { *data_value++; } \\
& \text { for (} \mathrm{i}=0 ; \mathrm{i}<8 ; \mathrm{i}++ \text {) } \\
& \text { if (crc_value\&0x0001) } \\
& \text { crc_value }=(\text { crc_value } \gg 1 \text {) }
\end{aligned}
$$

^0xa001

```
                                    }
                                    else
                                    {
crc_value= (crc_value>>1)
                            }
            }
}
return (crc_value) ;
}
```


9.5 Read-write rules of parameter address for function code

1. Descriptions of the other functions' address

Parameters address monitoring:

Register address	Address S / N	Data Description
0xDC	221	Setting freqency
0xDD	222	Output freqency
0xDE	223	Output Current
0xDF	224	Busbar voltage
0xE0	225	Motor speed
0xE1	226	Percentage of current
0xE2	227	IGBT temperature
0xE3	228	Output voltage
0xE4	229	Output power
0xE5	230	Count value
0xE6	231	PI preset value
0xE7	232	PI feedback value

Register address	Address S/N	Data Description
0xE8	233	Run time
0xE9	234	Input interface
0xEA	235	Output interface
0xEB	236	Rated power
0xEC	237	Compensation Frequency
0xED	238	Compensation voltage
0xEE	239	Phase angle
0xEF	240	Load factors
0xF2	242	Analog AI1 given value
0xF3	244	Analog AI2 given value
0xF4	245	Keyboard potentiometer set value

Control command
(valid when P0-02 is changed into 3)

Register address	Address S/N	Data Description
		$1:$ FWD run
		$2:$ FWD jogging
		$5:$ REV run
		$6:$ REV jogging
		$8:$ Stop
		$16:$ Regular stopping
		$32:$ Reset

Status of Converter

Register address	Address S/N	Data Description
		$0:$ Operating
	241	$1:$ FWD running
		$2:$ REV running
		$6:$ Malfunctioning

Fault address

Register address	Address S/N	Data Description	
0xF1	242	1: Storage fault	11: External fault
		3: Undervoltage	12: PI fault
		4: Overvoltage	13: Overtemperature
		5: Overload	14: Overcurrent
		6: Overcurrent	15: Motor Overload
		7: Input default phase	16: Contactor OFF
		8: Output default phase	20: Signal failure of current
		9: Output short circuit	detection
		10: System fault	21: Communication Fault

9.6 Parameter description of communication

Factory default	Baud rate	9600

The parameter above is used to set transmission rate of the data between superior controller and converter.

Note: the Baud rate of superior controller and converter should be the same; therwise, communication cannot be conducted.
Data format \quad Factory default \quad No checking: 8-N-1

The data format of superior controller and converter should be the same; otherwise, communication cannot be conducted.

P0-15	Factory default	Factory default	1
	Setting range	$1-127$ (Zero stands for broadcast address)	

The data format of superior controller and converter should be the same; otherwise, communication cannot be conducted.

For other relevant functional parameters, Please refer to P5-25 ~ P5-29 instructions.

APPENDIX

10-1 List of braking resistor

If controlled motor decelerates too fast, or load jittering of motor is too fast while converter is running, its electromotive force will charge the internal capacitors of converter through converter's reverse function, which will rise the voltage of power module and damage converter. However, this will be restrained by converter's internal control according to the condition of loading; additional braking resistor needs to be installed externally to release the power in time when braking performance doesn't meet customers' requirements. External braking resistor works by consuming energy which will be consumed completely by power braking resistor; therefore, power and resistance of braking resistor must be applicable and effective. Braking resistors whose power and resistance value are as followed are recommended to be applied to this converter. According to the condition of loading, value can be changed properly; but it must be no less than the minimum of this converter

For FD100

Converter Power	Recommended resistance	Minimum resistance
FD100-1-0-10-C-CE	$150 \mathrm{~W} 400 \Omega$	260Ω
FD100-1-0-20-C-CE	$200 \mathrm{~W} 300 \Omega$	200Ω
FD100-1-0-30-C-CE	$250 \mathrm{~W} 200 \Omega$	150Ω

For FD200

Converter Power	Recommended resistance	Minimum resistance
FD200-3-075-C-CE	$500 \mathrm{~W} 90 \Omega$	60Ω
FD200-3-100-C-CE	$800 \mathrm{~W} 60 \Omega$	47Ω
FD200-3-150-C-CE	$1000 \mathrm{~W} 47 \Omega$	36Ω
FD200-3-200-C-CE	$1500 \mathrm{~W} 36 \Omega$	27Ω
FD200-3-250-C-CE	According to the require- ments of brake units and FD200-3-1000-C-CE recommended to choose	

Due to the energy consumption of braking resistor, a mass of heat may be generated if it keeps braking frequently; therefore, safety and Inflammability of the surrounding must be taken into consideration

10.2.1 For VFD100

Rated Power kW	0.7	1.5	2.2	0.7	1.5	2.2	
Output current A	5	7	11	2.5	3.7	5.1	
Rated voltage V	Single-phase 220 V	Three-Phase 415V					

Specifications

Power supply	Rated input voltage/ frequeny	Single Phase $220 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, 3 Phase $415 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
	Permissible voltage fluctuation	187 V to 253 V for 1 phase \& 320 to 460 V for 3 Phase
	Permissible frequency fluctuation	$\pm 5 \%$
Control Characteristic	Control mode	Space Vector SVPWM and Flux Vector Control
	Frequency Control range	$0.1 \sim 400 \mathrm{~Hz}$.
	Frequency Accuracy	Digital setting 0.01%, Analog instruction 0.1\% (Max frequency)
	Frequency resolution	Digital instruction 0.1 Hz , Analog instruction 0.1 Hz .
	Accelerated/deceleratedtime	$0.0 \sim 3600$ Sec. Four accelerate/decelerate time settings available
	Multi Speed running	Built-in program
	Built-in PI	Easy to set up a simple Automatic control system
	Built-in Counter	Automatically Controlled Production line can be achieved
	Overload Capacity	G Type -150% rated current for 1 min . P type-120\% rated current for 1 min
	Braking torque	About 20\% (with brake resistor is about 150%)
	V/F mode	3 preset V/F mode and V/F program
	Automatic Energy Saving Operation	Changes the V/F curve according to the load to save energy
	Automatic Voltage Regulation	Regulates the voltage automatically whenever there is a change in grid voltage

Operation Function	Operation Commands	Keypad and External terminals
	Frequency Setting	Digital setting, Analog Voltage setting, Analog Current setting
	Input Signal	Forward/Reverse, Jogging selection, Multi Speed Control, Regular Stopping
	Output signal	Fault Alarm Output (250V/2A Contact), Open Collector Output
Protection Functions		Over Current, Over Voltage, Under Voltage, Over heat, Overload, Phase loss
Display		Parameters setting, Running status and Fault display
Operating conditions	Operating environment	Temperature: $-10 \sim+50$ Degree C, Humidity: $<90 \%$, No condensation, IP20
	Operations Area	Indoor, $<1000 \mathrm{~m}$ altitude above sea level
	Storage Temperature	$-20 \sim+60$ Degree C
	Vibration	$<5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$

10.2.2 For VFD200 Series

Rated Power kW	0.7	1.5	2.2	0.7	1.5	2.2	4	5.5	7.5	11	15	18.5	22	30
Output current A	5	7	11	2.5	3.7	5.5	9	13	17	25	32	38	45	60
Rated voltage V	Single-phase 220 V			Three-phase 415V										

Rated Power kW	37	45	55	75	90	110	132	160	185	200	220	250	280	315
Output current A	75	90	110	150	176	210	250	300	340	380	420	470	520	585
Rated voltage V	Three-phase 415V													

Specifications

Power supply	Rated input voltage/ frequeny	3 phase $415 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
	Permissible voltage fluctuation	320 to 460V for 3 Phase
	Permissible frequency fluctuation	$\pm 5 \%$
Control characteristic	Control mode	Space Vector SVPWM and Flux Vector Control
	Frequency Control range	$0.1 \sim 400 \mathrm{~Hz}$.
	Frequency accuracy	Digital setting 0.01\%, Analog instruction 0.1\% (Max frequency)
	Frequency resolution	Digital instruction 0.1 Hz , Analog instruction 0.1 Hz .
	Accelerated decelerated time	$0.0 \sim 3600$ s,four accelerate/decelerated time settings available
	Multi Speed running	Build-in program
	Build-in PI	Easy to consist a simple automatic control system
	Build-in counter	Automatically controlled Production line can be achieved
	Overload capacity	G Type - 150% rated current for 1 min . P type 120% rated current for 1 min
	Braking torque	About 20\% (with brake resistor is about 150\%)
	V/F mode	3 preset V/F mode and V/F program
	Automatic Energy saving operation	Changes the V/F curve according to the load to save energy
	Automatic Voltage Regulation	Regulates the voltage automatically when there is change in grid voltage
Operation function	Operation Commands	Keypad and External terminals
	Frequency Setting	Digital setting, Analog Voltage setting, Analog Current setting
	Input signal	Forward/Reverse, Jogging selection, Multi Speed Control, Regular Stopping
	Output signal	Fault Alarm Output (250V/2A Contact), Open Collector Output

Protection functions		Over Current, Over Voltage, Under Voltage, Over heat, Overload, Phase loss
Display		Parameters setting, Running status and fault display
Operating conditions	Operating environment	Temperature:-10 $\sim+50$ Degree C, Humidity: $<90 \%$, No condensation, IP20
	Operations area	Indoor, <1000m altitude above sea level
	Storage Temperature	$-20 \sim+60$ Degree C
	Vibration	$<5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$

10-3 Dimension for Installation

Product Code	Mounting Dimension		Dimension			Pore
	$\begin{aligned} & \text { length } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline \text { wide } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { length } \\ (\mathrm{mm}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { wide } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \hline \text { height } \\ (\mathrm{mm}) \end{gathered}$	(mm)
FD100-1-010-C-CE	141	80.5	152	89	123	¢5.2
FD100-1-020-C-CE						
FD100-1-030-C-CE						
FD100-3-010-C-CE						
FD100-3-020-C-CE						
FD100-3-030-C-CE						
FD100-3-050-C-CE						
$1 \mathrm{HP} \sim 3 \mathrm{HP}$ Keyboard installation dimension : length $=115 \mathrm{~mm}$, width $=85 \mathrm{~mm}$						

For FD200 Series:

Product Code	Mounting Dimension		Dimension			Pore Diameter
	A (mm)	B (mm)	H (mm)	W (mm)	D (mm)	(mm)
FD200-3-020-C-CE	107	175	185	118	167	¢4.5
FD200-3-030-C-CE						
FD200-3-050-C-CE						

Product Code	Mounting Dimension		Dimension			Pore Diameter (mm)
	A (mm)	B (mm)	H (mm)	W (mm)	D (mm)	
FD200-3-075-C-CE	148	235	247	160	190	\$5.5
FD200-3-100-C-CE						
FD200-3-150-C-CE	205	305	320	220	205	\$5.5
FD200-3-200-C-CE						
FD200-3-250-C-CE	180	416	432	255	234.5	$\phi 7$
FD200-3-300-C-CE						
FD200-3-400-C-CE						
FD200-3-500-C-CE	244	497	518	300	260	$\phi 9$
FD200-3-600-C-CE						
FD200-3-750-C-CE						
FD200-3-1000-C-CE	300	598	620	390	300	¢11

[^0]
10-4 Table of Parameter Settings for operator

Customer Name		Model	
Operational environment		Telephone	
Address			
Parameter Code	Settings	Parameter Code	Settings

[^0]: FD200-7.5HP-100HP Keyboard tap installation hole size : $\mathrm{E}=85 \mathrm{~mm}$; $\mathrm{F}=115 \mathrm{~mm}$ long.

